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On the critical behaviour of self-avoiding walks 

A J Guttmannt 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 9 July 1986 

Abstract. For the self-avoiding walk problem the series expansions of the chain generating 
function and mean square end-to-end distance generating function have been extended to 
27 steps for the square lattice and to 20 steps for the simple cubic lattice. We develop an 
analysis protocol based on the method of integral approximants. Using this protocol we 
find excellent agreement with Nienhuis’ exact exponent values in two dimensions, y =  
1.343 75 and Y = 0.750. In three dimensions we find y = 1.162 * 0.002 and v = 0.592 * 0.002. 
Accurate estimates of the critical point (reciprocal of the connective constant) for several 
two- and three-dimensional lattices are also obtained. 

1. Introduction 

We have extended the series for both the square lattice and simple cubic lattice 
self-avoiding walk chain generating function and mean square end-to-end distance 
series. For the square lattice we have obtained 27 terms, extended the existing series 
by two terms, while for the simple cubic lattice we have obtained 20 terms, an extension 
of one term for the chain generating function and five terms for the mean square 
end-to-end distance series. 

The series extensions were performed on a dedicated DEC Micro Vax 11, using a 
modified version of Torrie’s dimerisation program (Torrie and Whittington 1975). The 
execution times were 30 d for the square lattice and 75 d for the simple cubic lattice! 
These enormous times nevertheless constitute cheap computing given the cost of the 
hardware. 

The resulting series were carefully analysed by the method of integral approximants, 
using a protocol which we believe has widespread applicability. One difficulty in using 
integral approximants is that, in principle, a huge number of approximants are calcu- 
lable and one must decide which approximants to calculate, and how to combine the 
results so obtained into a single estimate of the critical parameters, with associated 
error estimates. 

In the next section we develop what we consider to be an appropriate protocol 
and demonstrate it on a variety of series with known critical behaviour. Subsequently, 
in § 3, we analyse the newly obtained series, and re-examine some existing series, in 
order to demonstrate the consistency of critical exponent estimates for a given space 
dimension and to obtain more precise values of the critical parameters. Section 4 
comprises a discussion and conclusion. 

t Permanent address: Department of Mathematics, Statistics and Computer Science, University of Newcastle, 
NSW 2308, Australia. 
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2. Method of analysis 

The method of integral approximants (Fisher and Au-Yang 1979, Hunter and Baker 
1979, Guttmann and Joyce 1972, Rehr et a1 1980) consists of representing the power 
series under study by the integral of the kth-order linear differential equation 

with 

9 = z d/dz (2.2) 

and Q, and P polynomials in z of degree N, and L, respectively, so that 

(2.3) 

We choose QK,O = 1 and, in the homogeneous case when P( z )  = 0, Qo,o = 0. This choice 
of differential equation is different from that used by Hunter and Baker (1979) and 
Fisher and Au-Yang (1979) in that we have forced the point at the origin to be a 
regular singular point. This choice is motivated by the fact that the Onsager (1944) 
solution of the zero-field free energy of the square lattice Ising model satisfies just 
such a differential equation. Further details of the method are discussed by Rehr et 
a1 (1980), Guttmann (1986b), Hunter and Baker (1979) and Fisher and Au-Yang (1979). 

This differential equation is a ‘natural’ generalisation of the Dlog Pad6 representa- 
tion. It is ‘natural’ in the sense that it generalises the class of functions representable 
by the differential equation to those functional forms we believe appropriate to the 
underlying thermodynamic functions. 

To be more precise, if K = 1 in (2.1), we denote the approximants by [ L I N O ;  NI] 
and the differential equation can then represent functions with singularities of the form 

(2.4) 

where A and B are regular in the neighbourhood of z = z,. By comparison, the Dlog 
Pad6 approximants are appropriate to functions of the more restricted form, 

f( Z )  - A( Z )  + E (  Z )  ( 1 - Z /  Z, )-’ 

f(z)-B(z)(l-z/:,)-Y. (2.5) 

If y b 1, then Dlog Pad6’s will usually do  an acceptable job of representing functions 
of the form (2.4), as the additive term A ( z )  is then negligible. Such is the case for the 
susceptibility of the two-dimensional Ising model, for which y = 1.75. However, for 
the specific heat of the three-dimensional Ising model, with exponent Q = 0.1, the Dlog 
Padi’s do  a poor job, as now the additive term in (2.4) is not negligible compared to 
the singular term. 

In the case of a confluent singularity, the K > 1 approximants would be expected 
to be appropriate, as (2.1) can then represent a singularity with K - 1 additional 
confluent terms, i.e. 

f(z) - A ( z )  + B ( z ) (  1 - z / ’ z , ) - ~ [  1 + C ~ ( Z ) (  1 - z / z , ) ~ I +  C,(Z)( 1 - z /z , ) ’~  

+. ~ + c K - , ( z ) ( l - z / z , ) s K ~ l ]  ( 2 . 6 )  
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where A, < 0, A, # integer, A ,  # A, and C , (z )  is regular in the neighbourhood of z,. Of 
course other types of singularity, such as confluent logarithms and even certain essential 
singularities, are also representable by the differential equation (2.1) (see Joyce and 
Guttmann 1973), but (2.4)-(2.6) are those commonly encountered in a variety of 
statistical mechanical models. 

For the two-dimensional Ising model susceptibility, we expect singularities of the 
form (2.4), so a K = 1 differential approximant would be appropriate and we show 
that this is indeed the case. However, for both the two- and three-dimensional SAW 

problems, and the three-dimensional Ising problem, the representation (2.6) is believed 
to hold, and so we might expect that approximants with K > 1 are more appropriate 
in studying such functions than are approximants with K = 1. Somewhat surprisingly, 
we find that this is not usually so. In almost every case, including those where one or 
more confluent terms are expected, we find that the K = 1 approximants are more 
stable, and aFpear better converged, than their K > 1 counterparts. The only explana- 
tion we have for this is that the confluent terms are comparatively weak when compared 
to the leading singular term, and so can be adequately represented numerically by the 
additive analytic term A(z).  However, for the generating function of the mean square 
end-to-end distance, the confluent structure is more complex, as we show in 9 3, and 
in that case higher-order ( K  > 1) approximants are more appropriate. 

The choice of which approximants to use is suggested by the invariance properties 
of Pad6 approximants. The diagonal [ N / N ]  Pad6 approximants are known to be 
invariant under the homographic transformation 

z = A w / ( l +  B w )  (2.7) 

which is the principal reason that one traditionally focuses on the diagonal and 
near-diagonal entries of the Pad6 table. 

For the first-order integral approximants ( K  = l ) ,  an analysis parallel to that given 
by Hunter and Baker (1979) shows that the [ L / L ;  L +  11 approximants possess this 
same invariance property. For K > 1 the situation is more complex and is fully 
discussed by Baker (1984). In practice we have found that approximants near to the 
invariant approximants are equally good. Therefore we have chosen to use the following 
sequence of approximants, which, for the most part, are near to the invariant 
approximants. For K = 1 we use the [ L / N -  1; N I ,  [ L / N ;  NI and [ L / N +  1; NI 
approximants with 1 s L s 8  and N 3 2 .  For K > 1 we use the [ L / N - 1 ;  N -  
1 , . . . ,  N - l , N ] ,  [ L / N ;  N , . . . ,  N, NI and [ L / N + l ;  N + 1 ,  . . . ,  N + l ,  NI 
approximants with 1 s L s 8 and N 5 2. Note too that biased approximants can also 
be defined, in which the position, or position and exponent, of one or more singularities 
may be specified-see Rehr et a1 (1980) and Guttmann (1987) for further details. 

For our first example we take the high-temperature susceptibility series of the 
triangular lattice S = t  Ising model, for which only 16 terms are known. A section of 
the table of approximants is shown in table 1, corresponding to those approximants 
defined above with K = 1. Certain coefficients are marked as defective. These are 
defined as approximants in which there is a (spurious) singularity on the positive real 
axis closer to the origin than the physical singularity. This parallels standard practice 
with Pad6 approximants. Additionally, however, it has been observed that a singularity 
on the positive real axis beyond, but close to, the physical singularity has a seriously 
deleterious effect on the exponent estimate of the approximant. Accordingly, we denote 
as defective all approximants with singularities on the positive real axis in the range 
0 < z < 1.15zc, other than the physical singularity at z = z,. (Rarely, we find singularities 
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Table 1. Triangular lattice Ising model susceptibility. Integral approximants [ L/ N + A; N I ,  
A = -1, 0, 1, showing estimates of x, and y. Defective approximants (see text) are marked 
with an asterisk. 

N 
A 2  3 4 5 6 7 

L =  1 

L = 2  

L = 3  

L = 4  

L = 5  

L = 6  

L = 7  

L = 8  

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 
1 

-1 

0 

1 

-1 

0 

1 

0.266 493 

0.250 000 

0.271 329* 

- 

-1.0000 

- 1.946 9 

0.264 516 

0.271 130* 

0.271 731 

- 1.605 5 

-1.935 2 

-1.970 1 

0.295 532 

0.270 783* 

0.269 177* 

-3.641 3 

-1.919 2 

-1.831 1 

0.268 984 

0.262 685 

0.267 469 

-1.799 5 

-1.253 1 

- 1.698 7 

0.267 400 

0.268 561' 

0.268 133 

-1.717 9 

-1.8149 

-1.771 5 

0.267 202 

0.268 444 

0.268 075 

- 1.686 3 

-1.8044 

- 1.765 0 

0.268 176 

0.269 152* 

0.267 952 

-1.7729 

-1.8674 

-1.7502 

0.267 935 

0.267 837 

0.267 934 

-1.7469 

-1.734 5 

- 1.747 7 

0.270 977* 

0.272 195* 

0.269 020* 

- 1.927 0 

- 1.994 2 

-1.821 4 

0.268 555* 

0.268 678* 

0.267 532* 

- 1.792 2 

-1.7994 

-1.7206 

0.268 689* 

0.267 355* 

0.267 960* 

-1.8002 

- 1.707 0 

-1.752 1 

0.267 444 

0.267 483 

0.267 948 

-1.700 5 

- 1.697 7 

-1.7507 

0.268 349* 

0.268 077 

0.267 979 

- 1.794 5 

-1.765 3 

- 1.754 2 

0.268 042 

0.267 828 

0.267 959 

-1.761 2 

-1.7349 

-1.751 8 

0.267 933 

0.267 939 

0.267 953 

- 1.748 0 

- 1.748 6 

-1.751 0 

0.267 941 

0.268 834* 

0.267 961 

- 1.749 0 

-1.933 6 

-1.7523 

0.268 993* 

0.268 523 

0.269 282* 

-1.819 7 

-1.7900 

- 1.902 0 

0.267 293* 

0.267 953' 

0.267 937 

-1.701 9 

-1.751 7 

- 1.749 5 

0.267 922* 

0.267 958* 

0.267 983* 

-1.750 1 

-1.7520 

-1.755 0 

0.268 243* 

0.267 98 1 * 

0.267 97 1 * 

-1.7844 

-1.754 8 

-1.753 6 

0.267 965 

0.267 990* 

0.267 944 

-1.7509 

-1.756 7 

- 1.748 6 

0.267 930 

0.267 952 

0.267 950 

-1.7469 

-1.7507 

-1.750 1 

0.267 974* 

0.267 926 
-1.755 2 

-1.7446 

0.267 987* 
-1.757 3 

0.270 oo4* 0.267 986 0.267 922 
-1.891 2 -1.7552 -1.7450 

0.269 723* 0.267 967 0.267 951 

0.268 051' 0.267 952 
-1.897 7 -1.752 7 -1.7503 

-1.763 7 -1.750 5 

0.267 989* 0.267 967* 0.268 274* 

0.267 983* 0.267 967* 

0.267 967* 0.267 953 

-1.7557 -1.7539 -1.7842 

-1.755 1 -1.7544 

-1.7529 -1.7507 

0.267 983* 0.267 962* 

0.267 988* 0.268 033" 

0.267 983* 

-1.755 0 -1.753 4 

-1.755 7 -1.765 3 

- 1.748 4 

0.267 964* 0.268 023* 

0.267 934 

0.267 978* 

-1.752 5 -1.763 7 

-1.747 8 

-1.7554 

0.267 940 

0.267 942* 
-1.748 3 

-1.748 4 

0.267 967* 
-1.753 5 
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in the complex plane close to this section of the real line. Such approximants are also 
considered to be defective.) 

From this table we summarise the data by taking means of estimates of the critical 
parameters for fixed values of n, where n is the maximal order of the coefficients used 
in the construction of the approximant. For each value of n there are I (  n )  non-defective 
approximants. These data are shown in table 2, together with an  error, which is rwice 
the standard deviation, corresponding to 99% confidence limits. (Occasional outliers 
being five standard deviations or more from the mean are also excluded.) Final 
estimates of the critical exponent y and critical point U, are obtained by taking all 
estimates with an error not exceeding four times the minimum error (which includes 
all entries in this case) and  weighting them according to their associated error. Thus 
if we denote the entries for the critical exponent by yI  f E ,  ( i  = 1,. . . , M )  we have 

with error given by 

( E ) = J M  c 1 / ~ ~  . >- '  
In this way we obtain 

y = 1.7495 f 0.0024 

v, = 0.267 945 * 0.000 01 1 

(2 .8a )  

(2 .8b )  

(2 .9)  

Table 2. Summary of results in table 1. The column labelled 'exponents' gives estimates 
of y. The column labelled I gives the sample size used in calculating the means. Errors 
are two standard deviations. ( a )  Unbiased estimates, ( b )  biased estimates. 

( a )  

n Exponent Critical point I 
~ ~ ~~~~ ~ ~ 

11 
12 1.7490 f 0.0040 0.267 940 f 0.000 014 3 
13 1.75 12 it 0.0059 0.267 963 * 0.000 042 5 
14 1.7494 i 0.0092 0.267 945 i 0.000 029 6 
15 1.7488i0.0042 0.267 942 iO.000 023 7 
16 1.7496 * 0.0058 0.267 948 i 0.000 026 5 

( b )  

n K = l  1 K = 2  1 

11 1.750 49i0.002 38 5 1.748 93 * 0.004 09 5 
12 1.750 31 iO.001 91 11 1.749 57 * 0.004 39 6 
13 1.750 15*00.001 15 8 1.749 65 * 0.001 68 1 
14 1.750 13r0.00067 9 1.75031i0.00032 6 
15 1.749 85 i 0.000 84 7 1.750 21 i 0.000 21 I 
16 1.74995*0.00043 12 1.74975*0.001 45 7 
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which can be compared to the exact values of 1.75 and 0.267 9491,. . . , respectively. 
Another calculation we did was a linear regression analysis of all entries corresponding 
to n = 16 (the highest-order coefficients). Then specifying the exact value of U, gave 
y = 1.7499. 

Next we constructed biased approximants, utilising the known value of ucr and 
obtained the results also shown in table 2 for both K = 1 and K = 2. Utilising the 
error analysis described above, we obtained the estimates 

y = 1.750 03 i 0.000 35 K = l  
(2.10) 

y = 1.750 19+0.000 18 K =2.  

Here we see that biased results ( K  = 1) are nearly an order of magnitude more accurate 
than their unbiased counterparts. Further, the results K = 1 are closer to the exact 
value than are those for K = 2. This is to be expected for this function, as there is no 
confluent singularity and so a K = 1 approximant is expected to be optimal. Both here 
and throughout this paper errors quoted in means are two standard deviations. 

As a second example we turn to the series for the chain generating function of the 
honeycomb lattice SAW problem. In that case both the exponent (g) and the critical 
point (2+d2)-”’= 0.541 1961 . . . are exactly known due to Nienhuis (1982,1984). 
Furthermore, it is widely believed (though by no means settled) that this function does 
have one or more confluent terms, so that higher-order approximants might be expected 
to be more suitable than first-order approximants. We return to a discussion of the 
existence of a confluent singularity in § 4. For this problem we have repeated the 
previous analysis and show the results in table 3. 

Table 3. Honeycomb lattice C(x)  series. Summary of exponent and critical point estimates 
from first- and second-order unbiased approximants. ( a )  K = 1 approximants, ( b )  K = 2 
approximants. 

(0 )  

n 

26 
27 
28 
29 
30 
31 
32 
33 
34 

Exponent 

1 .34947~0.032 18 
1.349 1810.00971 
1.344 1210.01899 
1.345 07 iO.006 05 
1.344 61 * 0.01 1 45 
1.343 87 *0.008 94 
1.343 03 i 0.003 39 
1.341 20 2 0.003 40 
1.341 30*0.004 84 

Critical point I 

0.541 2481 10.0003122 
0.541 2366 z 0.000 0756 
0.541 1736*0.000 1423 
0.541 2448 i 0.000 0405 
0.541 2128*0.0000771 
0.541 1961r0.0000571 
0.541 1899 I 0.000 0228 
0.541 1776r0.0000247 
0.541 1776* 0.000 0298 

8 
7 

11 
10 
10 

5 
7 
8 

11  

n Exponent Critical point 1 

23 and 24 1.345 45 z 0.02 1 80 0.541 2562iG.000 2976 16 
25 and 26 1 .j46 36 * 0.01 1 86 0.541 2189~0.000 1332 14 
27 and 28 1.347 19 * 0.004 99 0.541 2201 * 0.000 0443 9 
29 and 30 1.346 88 * 0.003 23 0.541 2162r0.0000297 12 
3 1 and 32 1.344 32 * 0.005 26 0.541 2004 * 0,000 0265 7 
33 and 34 1.345 23 i0.003 80 0.541 2039 i 0.000 0249 6 
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We combine these as described above to give the estimates 

y = 1.3433 *0.0021 
x,=0.541 198*0.000014 ] K = l  

y = 1.3460 f 0.0021 
x, = 0.541 209 f 0.000 016 1 
(x& = 0.541 192 

(x,) ,~  = 0.541 195 

K = 2  

(2.11) 

where (x , ) ]~  is just the mean (averaged over n )  of the estimates of x, obtained by linear 
regression with fixed n at the exact value of y. 

For the second-order approximants, about half the approximants were defective. 
This, coupled with the fact that there are only eight possible approximants for each 
value of n under the scheme we have described, compared to 12 possible first-order 
approximants for each n value, meant that we had insufficient approximants at fixed 
n to make our  analysis meaningful. (The mean and standard deviation of a sample 
of three or four items is clearly unsatisfactory.) Accordingly, for the K = 2 
approximants we have combined the entries for n and ( n  - 1 )  and it is these we have 
shown in table 3 and summarised above. 

It can be seen that the first-oider approximants give a more accurate estimate of 
y and first-order approximants also give a more accurate central estimate of x,, both 
from the unbiased estimates and from the means of the biased linear regression 
estimates. Both sets of estimates have errors which are wide enough to include the 
exact values, and accordingly support Nienhuis’ results. 

In this example the critical point is exactly known, and so biased approximants 
can be formed. This has been done and the results are summarised in table 4 for K = 1 
and K = 2 approximants biased both at x,, and at x,(l  - E ) ,  where E = 9 x The 
purpose of this last biasing is to determine the sensitivity of exponent estimates to 
errors in the critical point. 

Our results may be combined into a single estimate of y utilising the procedure 
described above and we find 

y(K = 1 , ~ = ~ , ) = 1 . 3 4 4 0 * 0 . 0 0 0 3  

y(  K = 2, x = x,) = 1.3440 * 0.0006 

y (  K = 1 ,  x=X,( l  - E ) )  = 1.3433*0.0003 

Y ( K  = 2 ,  x = x , ( l - ~ ) ) = 1 . 3 4 3 4 * 0 . 0 0 0 4 .  
(2.12) 

The resd ts  for K = 1 and K = 2 are in almost perfect agreement. However, the error 
bars are narrower for the first-order approximants. The exact result y = 1.343 7 5  is 
well supported by the approximants biased at x, and is just excluded by the first-order 
approximants biased at x,( 1 - E ) ,  while being just included by the corresponding 
second-order approximants. The change in y induced by a change E in x, was 
approximately 502. 

In summary then we find that the first-order approximants are marginally superior 
overall to the second-order approximants, even in the case of functions with confluent 
singularities. For functions of precisely the form (2.61 we would not expect this to be 
true indefinitely, but it appears to hold generally for most of the series one encounters 
in statistical mechanical systems. This complements the earlier observation of Hunter 
and Baker (1979) that first-order (inhomogeneous) approximants are usually superior 
to second-order homogeneous approximants. 
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Table 4. Honeycomb lattice C ( x )  series. Summary o f  exponent estimates from first- and 
second-order biased approximants. Biasing is done at x, and at x,( 1 - E ) ,  E = 9 x ( a )  
K = 1 approximants, ( b )  K = 2 approximants. 

(0) 

Exponent biased Exponent biased 
n at x, I at x,( 1 - E )  I 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

1.3434*0.0118 
1.3424 i 0.01 14 
1.3454* 0.0016 
1.3447 * 0.0023 
1.3437 i 0.0033 
1.3439i0.0013 
1.3440i 0.0005 
1.3437 i 0.0009 
1.3440 i 0.0006 
1.3440 i 0.0012 
1.3439* 0.0012 
1.3442 * 0.0008 

9 
10 
12 
11 
8 
6 
7 

10 
8 
9 
6 
8 

1.3429 * 0.01 19 
1.3448 * 0.0012 
1.3448 *0.0016 
1.3442 * 0.0024 
1.3430 * 0.0036 
1.3432* 0.0015 
1.3433 f 0.0005 
1.3429*0.0010 
1.3433 * 0.0009 
1.343 1 * 0.0009 
1.3432 i 0.0010 
1.3434 * 0.0007 

9 
7 

12 
11 
8 
6 
7 

10 
9 

10 
6 

10 

n 
Exponent biased 
at x, 1 

Exponent biased 
at x,(l - E )  1 

21 and 22 
23 and 24 
25 and 26 
27 and 28 
29 and 30 
31 and 32 
33 and 34 

1.3426 * 0.0196 

1.34441 0.0013 
1.3443 * 0.001 5 
1.3441 *0.0011 
1.3436 * 0.001 2 
1.3440 * 0.0012 

1.3436 * 0.0042 
13 
15 
14 
9 

10 
6 
4 

1.3444i0.234 
1.3432*0.0036 
1.3439 * 0.001 1 
1.3437 * 0.0009 
1.3435 *0.0014 
1.3430*0.0017 
1.343 1 * 0.0005 

14 
15 
13 

7 
10 
8 
4 

We have now seen this to be true for inhomogeneous approximants also. We have 
carried out a similar analysis on the triangular lattice chain generating function, which 
is known to 19 terms (Rapaport 1985a). In order to save space we do not give details 
but simply quote the results of the analysis. We find 

y = 1.3431 *0.0010 

x, = 0.240 916 * 0.000 004 
(x,),~ = 0.240 920. 

(2.13) 

These results were all obtained from first-order approximants. The higher-order 
approximants were consistent with, but more scattered than, the above values. The 
exponent estimate is in good agreement with the exact value of y = 1.343 75, while the 
critical point estimate is in excellent agreement with an earlier, and alternate, analysis 
(Guttmann 1984), in which we found x, = 0.240 920*0.000 017. 

In the next sections we apply this method to our newly extended series. 

3. Analysis of new series 

In table 5 we give the series expansions for the chain generating function and the 
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Table 5. Coefficients of C(x)  and R ( x )  series for the square and simple cubic lattices. 
( R t )  is obtained from the quotient of the nth coefficient of the R ( x )  series and the C ( x )  
series. 

Square lattice Simple cubic lattice 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

1 
4 

12 
36 

100 
284 
780 

2 172 
5 916 

16 268 
44 100 

120 292 
324 932 
881 500 

2374444 
6 416 596 

17 245 332 
46 466 676 

124 658 732 
335 116620 
897 697 164 

2 408 806 028 
6 444 560 484 

17266613812 
46146397316 

123481354908 
329712786220 
881317491628 

1 
8 

41 
176 
679 

2 452 
8 447 

28 120 
91 147 

289 324 
902 721 

2 777 112 
8 441 319 

25 398 500 
75 744 301 

224 156 984 
658 855 781 

1924932324 
5 593580859 

16175728584 
46 572 304 083 

133 556779740 
381611332725 

1086759598120 
3085406711 831 
8 735 073 410 100 

24665061125667 

1 
6 

30 
150 
726 

3 534 
16 926 
81 390 

387 966 
1 853 886 
8 809 878 

41 934 150 
198 842 742 
943 974 510 

4468911678 
21175146054 

100121875974 
473730252102 

2237723684094 
10576033219614 
49917327838734 

6 
72 

582 
4 032 

25 566 
153 528 
886 926 

4 983 456 
27 401 502 

148 157 880 
790 096 950 

4166321184 
21 760 624 254 

112 743 796 632 
580 052 260 230 

2966294589312 
15087996161382 
76384144381272 

385066579325550 
1933 885 653 380 544 

series for the sum of mean square end-to-end distances. These are defined by 

C ( x ) =  c,xn 

R ( x ) =  c A X n  

n a o  

n p o  

where 

and the mean square end-to-end distance is given by ( R ? ) = p , / c ,  where c, is the 
number of n step self-avoiding walks with a fixed origin and pn is the sum of the 
squared end-to-end distances of the c, SAW. 

For the square lattice C(x)  series, our analysis was identical to the (unbiased) 
analysis carried out on the honeycomb lattice C(x) series. The results are summarised 
in table 6 for first-order approximants. Combining the individual estimates as described 
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Table 6. Square lattice C(x)  series and R ( x j  series. Unbiased first-order approximants 
for C(x)  and unbiased first- and second-order approximants for R ( x j .  ( a )  K = 1 
approximants, C(x)  series. ( b j  K = 1 approximants, R ( x j  series, ( c j  K = 2 approximants, 
R ( x j  series. 

( a )  

n 

20 
21 
22 
23 
24 
25 
26 
27 

Exponent ( y) 

1.341 68 I 0.024 44 
1.344 10*0.01028 
1.339 64 * 0.015 95 
1.343 12 * 0.003 5 1 
1.343 52 *O.OOO 89 
1.343 77*0.000 51 
1.343 58*0.000 21 
1.343 61 *O.OOO 10 

Critical point 

0.379 0307 0.000 3033 
0.379 0634 i 0.000 0565 
0.379 0252 * 0.000 0079 
0.379 0489 * 0.000 0200 
0.379 0515 i 0.000 0027 
0.379 0529 * 0.000 0026 
0.379 0519 i 0.000 0008 
0.379 0521 *O.OOO 0005 

i 

11 
12 
11 
11 
10 
10 
10 
10 

n Exponent ( y + 2 u )  Critical point 1 

21 2.831 44 * 0.002 40 0.37900922*0.00001363 11 
22 2.833 56 i0.006 24 0.379 019 93 iO.000 032 39 4 
23 2.836 9610.005 81 0.379 037 23 * 0.000 029 00 3 
24 2.835 40i0.001 58 0.379 030 20* 0.000 009 22 2 
25 2.835 38 * 0.001 33 0.379 029 43 * 0.000 008 45 4 
26 2.836 55i0.000 14 0.379 035 87 * 0.000 000 38 2 
27 2.837 12*0.001 36 0.379 037 11 i 0.000 007 56 8 

( C )  

n Exponent ( y + 2 v )  Critical point 1 

20 and 21 2.834 48 *0.002 26 0.379021 42*0.00001064 12 
22 and 23 2.839 78i0.004 17 0.379043 51*0.00001547 7 
24 and 25 2.842 69 * 0.004 91 0.379 05401 *0.000013 21 11 
26 and 27 2.840 14i0.006 38 0.37904597i0.00001864 8 

y = 1.343 61 iO.000 13 
x, = 0.379 0520* 0.000 0006 
(x,),~ = 0.379 052 65 * 0.000 000 21 (Y =%). 

These results are in excellent agreement with the exact value y = 1.343 75 and the 
estimate of x, is also in excellent agreement with the previous estimate based on square 
lattice polygons of x, = 0.379 0528 obtained by Enting and Guttmann (1985). The 
results for K = 2 ,3  approximants (not shown) are less precise but consistent with the 
above estimates. In order to determine the exponent v, we can examine the series for 
R ( x ) ,  with exponent ( y + 2v) and the critical point at x = x,, or the generating function 
for ( R : )  with exponent 2 v  and critical point x, = 1.0. This second series is clearly more 
appropriate when y is not known, as in the case of three-dimensional models. Further- 
more, for two-dimensional SAW models x, is also unknown (except for the honeycomb 
lattice) and  so this favours the analysis of the ( R ; )  generating function. 
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In table 6 we summarise the results of an unbiased analysis of the square lattice 
R ( x )  series, and in table 7 ( a )  we give the results of a biased analysis (at x, = 1.0) of 
the generating function of ( R : ) .  From both analyses we see a tendency for the critical 
parameters to approach limiting value, though not a monotonic trend. For the R ( x )  
series, both K = 1 and K = 2 approximants give critical point estimates which are 
approaching the value of x, found from the C(x) series, while the exponent estimates 
are also approaching the expected value of y + 2v = 2.843 75, obtained from Nienhuis’ 
exact results, y = 

The generating function for (I??), biased at x, = 1.0, gives even better results. Firstly, 
we observe that this generating function does not correspond to any physical thermody- 
namic quantity. It is just a mathematical construction of interest to this problem. 
Accordingly, a singularity on the positive real axis between the origin and x, does not 
correspond to some non-physical critical point, and so we have no basis to reject such 
approximants, which comprise less than 10% of the total number of approximants. 
Accordingly we only reject those approximants with additional singularities in the 
range x E [0.9,1.05], as it is these which are observed to cause a change in the exponent 
estimates at x,= 1.0. Very occasionally, we will also reject an approximant if i t  lies 
well outside the scatter of all remaining approximants (more than five or six standard 
deviations from the mean). Such outliers occur for only 1 or 2% of the approximants. 

Another feature of the generating function for ( R : )  is that if R ( x )  and C(x)  have 
a confluent singularity structure, the generating function for ( R i )  will have a more 
complex confluent singularity structure. To be precise, if C(x) is of the form (2.6), 

and v = :. 

Table 7. Square lattice and triangular lattice ( R ; )  analysis. Biasing the approximants at 
x, = 1, first-, second- and third-order approximants are constructed. ( a )  Square lattice ( R ; )  
analysis, ( b )  triangular lattice (R: , )  analysis. 

( a )  

n K = l  I K = 2  I K = 3  I 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

2.4906 * 0.0034 
2.4917 i 0.0024 
2.4929 i 0.0047 
2.4934 * 0.0018 
2.4946 i 0.0035 
2.4955 * 0.0021 
2.4956 * 0.0022 
2.4960 i 0.0017 

2.4971 10.0012 
2.4968i0.0016 

12 
12 
11 
11 
11 
12 
12 
11 
12 
10 

2.4910* 0.0016 
2.4913 iO.0056 
2.4926i0.0112 

2.4963 f 0.0107 

2.4975 i 0.0019 

2.4981 *0.0010 

2.4895 i 0.0036 

2.4979 * 0.0044 

2.4983 i 0.0028 

2.4984i 0,0010 

8 
7 
7 
8 
5 
7 
6 
8 
8 
8 

2.4897 * 0.0094 
2.4939 * 0.016 
2.4984i0.0088 
2.4946* 0.0074 
2.4978i0.0018 
2.4987 * 0.0012 
2.4987 * 0.0021 
2.4984 * 0.0008 
2.4980 * 0.0013 
2.4985 iO.0012 

6 
6 
6 
5 
6 
6 
6 
5 
6 
6 

n K = l  I K = 2  I K = 3  I 

12 
13 
14 
15  
16 
17 
18 
19 

2.4872 i 0.0019 
2.4891 * 0.0042 
2.4903 i 0.0048 
2.4936 f 0.0068 
2.4953 tO.0212 
2.495 1 i 0.0045 
2.495 1 * 0.0009 
2.4955 * 0.0009 

10 
12 
11 2.4929 i 0.0239 5 2.4884*0.0173 
11 2.4921 hO.0074 2 2.4869 * 0.0102 
11 2.4928 i 0.0066 4 2.4930i0.0139 
11 2.4948 * 0.0069 7 2.4933 *0.0091 
12 2.4956 f 0.0045 5 2.4961 fO.0014 
12 2.4973 * 0.0022 7 2.4975 * 0.0019 
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and R ( x )  is of the same form-but of course with y replaced by ( y + 2v) and different 
values of the amplitudes A, B and C, ,  then (Rf , )  will have additional confluent 
singularities with exponents 2A,, 3 A 3 ,  4A, ,  . . . , and 2A2, 3 A 2 ,  4A2, .  . . . Indeed, unless 
a totally improbable cancellation of amplitudes occurs, such a complication will always 
arise unless the only correction terms are analytic. That is, unless the functions C ( x )  
and R ( x )  are of the simpler form (2.4). 

The conclusion one may draw from these observations is that higher-order 
approximants would seem to be appropriate for the generating function of (Rf,) ,  due 
to the additional confluent terms it contains. This expectation is borne out by the 
results shown in table 7( a ) ,  where the K = 2 approximants appear to be better converged 
than their K = 1 counterparts, and the K = 3 approximants appear to be still better 
converged. 

In all cases, K = 1 ,  2 and 3, exponent estimates are increasing, almost monotonically 
and are entirely consistent with a limit of 2.500. We have no theoretical results for 
the expected rate of convergence of such sequences (see Guttmann (1987) for a fuller 
discussion), but empirically we expect the series to have reached the asymptotic regime 
by n = 33 or 34. Unfortunately this represents six or seven additional series coefficients, 
which is quite unattainable by current methods. 

We have also studied the triangular lattice ( R f , )  generating function given by 
Rapaport (1985a) biased at  xc= 1.0. The results are shown in table 7(b). Again we 
observe a steady increase of exponent estimates with n. The last entry of the K = 1 
approximants is some 0.005 away from the expected limit, while for K = 2 and 3 the 
limit is about 0.003 away from the last entries. We use this behaviour as a guide to 
extrapolating the simple cubic lattice (Rf , )  generating function results. These are shown 
in table 8 and again a quasi-monotone trend of exponent estimates is apparent. 
Assuming the approach to the limit occurs at a comparable rate to the triangular lattice 
data-an assumption that is entirely consistent with the two sets of data-allows us 
to make the estimate 1 +2v  = 2.184i0.004 or  v = 0.592*0.002. This is precisely the 
value of Y obtained by Rapaport (1985b) based on Monte Carlo analysis of SAW on 
the simple cubic and body-centred cubic lattices. The field theoretic results of Le 
Guillou and  Zinn-Justin (1980) of v = 0.588 * 0.001 lie just outside our value. 

For the FCC lattice, 14 terms of the chain generating function are known (McKenzie 
1979), but only 12 terms of the R ( x )  series are known (Majid et a1 1983). For the 
BCC and diamond lattices both the C(x) and R ( x )  series are significantly shorter than 
for the simple cubic and FCC lattices, so we d o  not attempt an analysis of the data for 

Table 8. Simple cubic lattice (Rf , )  analysis. Biased approximants of first, second and third 
order, with x, = 1 .  

n K = l  I K = 2  I K = 3  1 

12 
13 
14 
15 
16 
17 
18 
19 
20 

2.1962i0.0076 
2.1955 *0.0018 
2.1947 * 0.0014 
2.1953 *OB058 
2.1908 *0.0045 
2.1923i0.0019 
2.1904*0.0048 
2.1904* 0.0042 
2.1891 50.0026 

9 
12 
10 
8 

1 1  9 

12 
1 1  
12 

2.l969*0.0011 
2.1962*0.0028 
2.1951 *0.0117 
2.1967 * 0.0092 
2.1917 * 0.0037 
2.1930*0.0028 
2.1928 * 0.0048 
2.1892 * 0.0076 
2.1874* 0.0010 

~~~ 

2.1967 *0.0110 
2.1957*0.0 
2.1973 f a 3  

2.1972 i 0.0158 
2.1997 * 0.0144 
2.1928* 0.0032 
2.1926 * 0.0060 
2.1889r0.0044 
2.1840i0.0038 
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those lattices. For the FCC ( R i )  generating function, the exponent estimates, sum- 
marised in table 9, are rapidly decreasing with increasing n. It is difficult to extrapolate 
these sequences, but they are clearly entirely consistent with the simple cubic lattice 
result of 1 + 2 v = 2.184 * 0.004. 

Table 9. Face-centred cubic lattice ( R i )  analysis. Biased approximants of first and second 
order, with x, = 1. 

n K = l  
~ 

I K = 2  I 

7 2.1939 ztO.0019 3 
8 2.1979 * 0.0052 3 
9 2.1967 *0.0033 7 2.1993 iO .0  2 

10 2.1966 * 0.0031 7 2.1976 = 0.0002 2 
11 2.1948 *0.0018 10 2.1954* 0.0063 4 
12 2.1930 f 0.0015 9 2.1912 2 0.0081 5 

Turning now to the chain generating function data for three-dimensional lattices, 
our analyses of the C ( x )  series for the sc and FCC lattices were the same as for the 
square lattice data. The results of our analysis for the sc lattice are shown in table 
lO(a)  and may be summarised as 

Y =  1.1613*0.0021 

x, = 0.213 497 *O.OOO 010 
(3.3) 

from the K = 1 approximants. The K = 2 approximants are more widely scattered than 
their K = 1 counterparts. Only the last entry ( n  = 19 and 20) has an associated error 
of comparable size to the K = 1 approximants, and the estimates given there of 
y = 1.1621 kO.0034 and x,=O.213 500*0.000 017 are in complete agreement with the 
K = 1 results. We have performed a similar analysis for the FCC lattice. For the chain 
generating function 14 series terms are known and the results, shown in table 10(b), 
may be summarised as follows: 

y = 1.1623 i0.0018 

x, = 0.099 635 * 0.000 005 
K = l  

(3.4) 
y =  1.1633*0.0011 

x, = 0.099 638 * 0.000 002 
K =2.  

We combine these to give our final estimate of 

y = 1.1629*0.0020 

x, = 0.099 637 * 0.000 006. 
(3.5) 

Combining this estimate of y with that obtained for the sc lattice, assuming that they 
are equal, gives 

(3.6) 
The field theoretic result (Le Guillou and Zinn-Justin 1980) of y =  1.1615*0.0015 is 
in excellent agreement with this value, though their more recent value (Le Guillou 
and Zinn-Justin 1985) of y = 1.160*0.004 is not quite as consistent. 

y = 1.1620 * 0.0020. 
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Table 10. Simple cubic and face centred cubic C(x)  series. Unbiased analysis using first- 
and second-order approximants. ( a )  Simple cubic lattice, ( b )  face-centred cubic lattice. 

n Exponent 

K = l  13 
approximants 14 

15 
16 
17 
18 
19 
20 

~ ~ 

1.171 44*0.035 46 
1.163 69*0.012 84 
1.15477*0.016 17 
1.162 70*0.00692 
1.162 81 *0.005 69 
1.16096*0.00429 
1.15897*0.00396 
1.161 96*0.003 69 

Critical point 

0.213 5693*0.000 2702 
0.213 5149 * 0.000 0871 
0.213 4550*0.000 1008 
0.213 5037 i 0.000 0380 
0.213 5055 * 0.000 0279 
0.213 4971 *O.OOO 0258 
0.213 4867 *O.OOO 0160 
0.213 4993 i 0.000 0146 

I 

11 
9 

10 
6 
7 

11 
7 

11 

- 

K = 2  13and14 1.16588i0.00804 0.213 5280*0.0000474 11 
approximants 15 and 16 1.164 11 kO.009 08 0.213 5177*0.0000907 13 

17 and 18 1.168 60*0.016 50 0.213 5345 *O.OOO 0824 16 
19 and 20 1.162 12*0.003 35 0.213 4998*0.0000168 14 

n 

K = l  9 
approximants 10 

11 
12 
13 
14 

K = 2  11 
approximants 12 

13 
14 

Exponent 

1.174 68 * 0.026 00 
1.176 51 *0.025 40 
1.161 28k0.00263 
1.15961*0.00999 
1.163 14k0.003 26 
1.163 43*0.003 06 

1.163 00*0.002 86 
1.163 37*0.003 70 
1.163 19*0.001 63 
1.163 45k0.001 72 

Critical point I 

0.099 6781 *O.OOO 1289 
0.099 691 1 * 0.000 0992 
0.099 6317 *O.OOO 0090 
0.099 6279 * 0.000 0285 
0.099 6374* 0.000 0078 
0.099 6383 * 0.000 0063 

0.099 6367 * 0.000 0096 
0.099 6379 * 0.000 0109 
0.099 6376 * 0.000 0032 
0.099 6383 * 0.000 0032 

4. Discussion 

Our analysis of the data for the square and triangular SAW problem strongly supports 
the values proposed for the critical exponents by Nienhuis (1982,1984) as exact, i.e. 
y = and v =$ Accepting these as exact, linear regression on unbiased integral 
approximants gives the following estimates of the critical points: 

x, = 0.541 1935 * 0.000 0045 (honeycomb) 

x, = 0.379 0528 f 0.000 0015 (square) (4.1) 

X, = 0.240 920 * 0.000 003 (triangular), 

These estimates are in good agreement with the exact value (Nienhuis 1982) of 
0.541 1961 . . . on the honeycomb lattice, the estimate based on square lattice polygons 
of 0.379 0528 f 0.000 0040 (Enting and Guttmann 1985) and the Monte Carlo estimates 
for the triangular lattice (Guttmann et a1 1986) of 0.240 91 *O.OOO 02 and the previous 
series analysis estimate (Guttmann 1984) of 0.240 920 f. 0.000 017. 
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Turning to the question of the existence, and value, of the correction-to-scaling 
exponent for the two-dimensional SAW problem, it is fair to say that the situation is 
confused! For a review of the numerous opinions until the end of 1983 see Guttmann 
(1984), while more recent views are discussed in Rapaport (1985a, b).  In those papers, 
Rapaport argues that there is no need to assume the presence of a correction-to-scaling 
exponent, and that indeed his Monte Carlo data favours an  exponent of 1- 
corresponding to an analytic correction-in both two and three dimensions. While we 
are unable to provide an  analysis for all three two-dimensional lattice SAW models 
that points to the same correction-to-scaling exponent for all lattices, we are able to 
provide strong evidence, both numerically and theoretically, for the existence of 
non-analytic corrections in the two-dimensional case. If they are present in the 
two-dimensional case, it is then most reasonable to expect their presence in the 
three-dimensional case. 

The theoretical evidence for the presence of such a term follows from Nienhuis' 
(1982) work, where he successfully identifies the critical point (for the honeycomb 
lattice model) and the critical exponents y and U. The same theory also predicts a 
correction-to-scaling term with an  exponent of 1.50. Weaker evidence for a non-analytic 
correction to scaling term comes from the field theory calculations of Le Guillou and 
Zinn-Justin (1980), who obtain an exponent of 1.15. Their results are not terribly 
accurate for two-dimensional models however. Recent conformal invariance arguments 
by Saleur (1987) suggest the presence of at least one correction-to-scaling exponent, 
with a value of $ and Saleur (1987) also suggests the presence of a second such term 
with exponent 4. The arguments for the latter are somewhat suspect and evidence for 
the first such correction-to-scaling exponent from series analysis is scant. 

Turning now to the numerical evidence, we point out that, if only analytic corrections 
were present, then we could write ( R i )  as 

(4.2) 

Then the sequence {R',/n'"} should be well fitted by a polynomial in l / n ,  with the 
quality of the fit improving with the degree of the polynomial. This is precisely the 
observed behaviour for the analogous quantity in the two-dimensional Ising problem, 
which is the second moment of the correlation function M 2 .  However, for the SAW 

data the estimates of the amplitudes C , ,  C 2 ,  C3 show highly erratic behaviour as the 
degree of the polynomial in (4.2) is increased. Thus we conclude that the sequence is 
nor well fitted by (4.2) and hence that non-analytic correction terms exist. We consider 
their value to be an open question, but note that there is no compelling series evidence 
to suggest a value different from Nienhuis' value A = 1.5. 

Turning now to our analysis of the three-dimensional data, we find v = 0.592 rt 0.002 
from the simple cubic lattice data, while our analysis of the chain generating functions 
of the FCC and  sc lattices gave 

( R i )  - An2"( 1 + C,/ n + C,/ n2 + C,/ n 3  + . . . ). 

x,=O.213 497*0.000010 sc 

x, = 0.099 637 * 0.000 006 FCC 
and 

y = 1.1613 *0.0021 sc 
(4.3) 

y = 1.1629*0.0020 FCC. 

Assuming lattice independence of the exponents leads to our final estimate of y =  
1.162i.0.002, in good agreement with field theory predictions previously cited. In a 
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subsequent paper (Guttmann 1987a) we apply this method of analysis to the high- 
temperature susceptibility series of the three-dimensional Ising model and obtain 
exponent estimates consistent with lattice independence. However in that paper we 
point out that, for the spin-f Ising model data, the results of this analysis are slightly 
misleading, and  that trends in the data must also be accounted for. It might be asked 
whether the same effect might not be present in the cases considered here. We think 
this is unlikely as it is clearly easier to reach the asymptotic regime for the SAW problem 
than for the Ising problem. For the latter, new classes of magnetic graph enter at 
higher and  higher order in the series, whereas for the SAW problem we are considering, 
only one class of graph contributes, so the approach to asymptotia should be smoother. 
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